Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Chem Soc Rev ; 53(5): 2284-2299, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38324331

ABSTRACT

A biofilm constitutes a bacterial community encased in a sticky matrix of extracellular polymeric substances. These intricate microbial communities adhere to various host surfaces such as hard and soft tissues as well as indwelling medical devices. These microbial aggregates form a robust matrix of extracellular polymeric substances (EPSs), leading to the majority of human infections. Such infections tend to exhibit high resistance to treatment, often progressing into chronic states. The matrix of EPS protects bacteria from a hostile environment and prevents the penetration of antibacterial agents. Modern robots at nano, micro, and millimeter scales are highly attractive candidates for biomedical applications due to their diverse functionalities, such as navigating in confined spaces and targeted multitasking. In this tutorial review, we describe key milestones in the strategies developed for the removal and eradication of biofilms using robots of different sizes and shapes. It can be seen that robots at different scales are useful and effective tools for treating bacterial biofilms, thus preventing persistent infections, the loss of costly implanted medical devices, and additional costs associated with hospitalization and therapies.


Subject(s)
Robotics , Humans , Biofilms , Bacteria , Anti-Bacterial Agents/pharmacology
2.
Small ; : e2306943, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38239086

ABSTRACT

The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2 O3 ) microparticles carrying magnetite (Fe3 O4 ) nanoparticles and surface functionalization with organic ß-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.

3.
Adv Mater ; 35(44): e2304694, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660286

ABSTRACT

Covalently functionalized germanane is a novel type of fluorescent probe that can be employed in material science and analytical sensing. Here, a fluorometric sensing platform based on methyl-functionalized germanane (CH3 Ge) is developed for gas (humidity and ammonia) sensing, pH (1-9) sensing, and anti-counterfeiting. Luminescence (red-orange) is seen when a gas molecule intercalates into the interlayer space of CH3 Ge and the luminescence disappears upon deintercalation. This allows for direct detection of gas absorption via fluorometric measurements of the CH3 Ge. Structural and optical properties of CH3 Ge with intercalated gas molecules are investigated by density functional theory (DFT). To demonstrate real-time and on-the-spot testing, absorbed gas molecules are first precisely quantified by CH3 Ge using a smartphone camera with an installed color intensity processing application (APP). Further, CH3 Ge-paper-based sensor is integrated into real food packets (e.g., fish and milk) to monitor the shelf life of perishable foods. Finally, CH3 Ge-based rewritable paper is applied in water jet printing to illustrate the potential for secret communication with quick coloration and good reversibility by water evaporation.

4.
Npj Flex Electron ; 7(1): 26, 2023.
Article in English | MEDLINE | ID: mdl-37304907

ABSTRACT

Wearable sensors have made significant progress in sensing physiological and biochemical markers for telehealth. By monitoring vital signs like body temperature, arterial oxygen saturation, and breath rate, wearable sensors provide enormous potential for the early detection of diseases. In recent years, significant advancements have been achieved in the development of wearable sensors based on two-dimensional (2D) materials with flexibility, excellent mechanical stability, high sensitivity, and accuracy introducing a new approach to remote and real-time health monitoring. In this review, we outline 2D materials-based wearable sensors and biosensors for a remote health monitoring system. The review focused on five types of wearable sensors, which were classified according to their sensing mechanism, such as pressure, strain, electrochemical, optoelectronic, and temperature sensors. 2D material capabilities and their impact on the performance and operation of the wearable sensor are outlined. The fundamental sensing principles and mechanism of wearable sensors, as well as their applications are explored. This review concludes by discussing the remaining obstacles and future opportunities for this emerging telehealth field. We hope that this report will be useful to individuals who want to design new wearable sensors based on 2D materials and it will generate new ideas.

5.
ACS Nano ; 17(8): 7595-7603, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37043825

ABSTRACT

The brewing industry will amass a revenue above 500 billion euros in 2022, and the market is expected to grow annually. This industrial process is based on a slow sugar fermentation by yeast (commonly Saccharomyces cerevisiae). Herein, we encapsulate yeast cells into a biocompatible alginate (ALG) polymer along Fe3O4 nanoparticles to produce magneto/catalytic nanostructured ALG@yeast-Fe3O4 BioBots. Yeast encapsulated in these biocompatible BioBots keeps their biological activity (growth, reproduction, and catalytic fermentation) essential for brewing. Catalytic fermentation of sugars into CO2 gas caused a continuous oscillatory motion of the BioBots in the solution. This BioBot motion is employed to enhance the beer fermentation process compared to static-free yeast cells. When the process is finished, magnetic actuation of BioBots is employed for their retrieval from the beer samples, which avoids the need of additional filtration steps. All in all, we demonstrate how an industrial process such as beer production can be benefited by miniaturized autonomous magneto/catalytic BioBots.


Subject(s)
Beer , Saccharomyces cerevisiae , Beer/analysis , Fermentation
6.
J Colloid Interface Sci ; 643: 447-454, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086534

ABSTRACT

Micromachines gain momentum in the applications for environmental remediation. Magnetic components have been used to functionalize light-responsive micromachines to achieve efficient magnetic microrobots with photodegradation activity for decomposition of environmental pollutants. However, the influence of photocatalyst itself on the trajectory of micromotors in conjunction with magnetic motion was never considered. In this work, light-powered catalysis and transversal rotating magnetic field have been independently and simultaneously applied over Fe3O4@BiVO4 microrobots to investigate the dynamics of their hybrid motion. Light exposure of microrobots results in the production of reactive oxygen species (ROS) which power the microrobots, in addition to magnetic powered motion, and have a strong influence on the magnetic trajectories, resulting in an unexpected alteration of the direction of the motion of the microrobots. We have subsequently applied such magnetic/light powered micromachines for removal of microplastics in cigarette filter residues, one of the major contributors to the microplastic pollution, and dyes via photocatalysis. Such dual orthogonal propulsion modes act independently on the motion of the micromachines; and they also bring additional functionality as photodegradation agents. Hence, the dual magnetic/photocatalytic microrobots shall find a variety of catalytic applications in different fields.

7.
Adv Mater ; 35(23): e2300191, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36995927

ABSTRACT

Modern micro/nanorobots can perform multiple tasks for biomedical and environmental applications. Particularly, magnetic microrobots can be completely controlled by a rotating magnetic field and their motion powered and controlled without the use of toxic fuels, which makes them most promising for biomedical application. Moreover, they are able to form swarms, allowing them to perform specific tasks at a larger scale than a single microrobot. In this work, they developed magnetic microrobots composed of halloysite nanotubes as backbone and iron oxide (Fe3 O4 ) nanoparticles as magnetic material allowing magnetic propulsion and covered these with polyethylenimine to load ampicillin and prevent the microrobots from disassembling. These microrobots exhibit multimodal motion as single robots as well as in swarms. In addition, they can transform from tumbling to spinning motion and vice-versa, and when in swarm mode they can change their motion from vortex to ribbon and back again. Finally, the vortex motion mode is used to penetrate and disrupt the extracellular matrix of Staphylococcus aureus biofilm colonized on titanium mesh used for bone restoration, which improves the effect of the antibiotic's activity. Such magnetic microrobots for biofilm removal from medical implants could reduce implant rejection and improve patients' well-being.


Subject(s)
Biofilms , Titanium , Humans , Physical Phenomena , Motion , Magnetic Fields
8.
Nat Commun ; 14(1): 935, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36804569

ABSTRACT

The recent COVID-19 pandemic has resulted in the massive discard of pandemic-related plastic wastes, causing serious ecological harm and a high societal burden. Most single-use face masks are made of synthetic plastics, thus their careless disposal poses a direct threat to wildlife as well as potential ecotoxicological effects in the form of microplastics. Here, we introduce a 1D magnetic photoactive microswarm capable of actively navigating, adhering to, and accelerating the degradation of the polypropylene microfiber of COVID-19 face masks. 1D microrobots comprise an anisotropic magnetic core (Fe3O4) and photocatalytic shell (Bi2O3/Ag), which enable wireless magnetic maneuvering and visible-light photocatalysis. The actuation of a programmed rotating magnetic field triggers a fish schooling-like 1D microswarm that allows active interfacial interactions with the microfiber network. The follow-up light illumination accelerates the disruption of the polypropylene microfiber through the photo-oxidative process as corroborated by morphological, compositional, and structural analyses. The active magnetic photocatalyst microswarm suggests an intriguing microrobotic solution to treat various plastic wastes and other environmental pollutants.


Subject(s)
COVID-19 , Masks , Animals , Humans , Plastics , Pandemics/prevention & control , Polypropylenes , COVID-19/prevention & control
9.
Nat Commun ; 14(1): 2, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596775

ABSTRACT

Assistive technology involving auditory feedback is generally utilized by those who are visually impaired or have speech and language difficulties. Therefore, here we concentrate on an auditory human-machine interface that uses audio as a platform for conveying information between visually or speech-disabled users and society. We develop a piezoresistive tactile sensor based on a black phosphorous and polyaniline (BP@PANI) composite by the facile chemical oxidative polymerization of aniline on cotton fabric. Taking advantage of BP's puckered honeycomb lattice structure and superior electrical properties as well as the vast wavy fabric surface, this BP@PANI-based tactile sensor exhibits excellent sensitivity, low-pressure sensitivity, reasonable response time, and good cycle stability. For a real-world application, a prototype device employs six BP@PANI tactile sensors that correspond to braille characters and can convert pressed text into audio on reading or typing to assist visually or speech-disabled persons. Overall, this research offers promising insight into the material candidates and strategies for the development of auditory feedback devices based on layered and 2D materials for human-machine interfaces.


Subject(s)
Communication , Touch , Humans , Speech Disorders , Speech
10.
Small ; 19(17): e2208259, 2023 04.
Article in English | MEDLINE | ID: mdl-36703532

ABSTRACT

Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.


Subject(s)
Cystine , Prostatic Neoplasms , Male , Humans , Zinc
11.
ACS Appl Mater Interfaces ; 15(5): 7023-7029, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700926

ABSTRACT

Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.


Subject(s)
Ferrosoferric Oxide , Magnetospirillum , Bacteria/metabolism , Bacterial Proteins/metabolism , Decontamination , Magnetospirillum/metabolism , Robotics/methods
12.
Small Methods ; 7(1): e2201014, 2023 01.
Article in English | MEDLINE | ID: mdl-36408765

ABSTRACT

"Soft" robotics based on hydrogels appears as an alternative to the traditional technology of "hard" robotics. Soft microrobots are employed for drug delivery and cell manipulation. This work develops magnetic hydrogel-based microrobots using chitosan (CHI) as the body of the micromotor and Fe3 O4 nanoparticles to allow for its magnetic actuation. In addition, ZnO nanoparticles are incorporated inside the CHI body of the microrobot to act as an active component for pollutants photodegradation. CHI@Fe3 O4 -ZnO microrobots are used for the efficient photodegradation of persistent organic pollutants (POPs). The high absorption of CHI hydrogel enhances the POP photodegradation, degrading it 75% in just 30 min. The adsorption-degradation and magnetic properties of CHI@Fe3 O4 -ZnO microrobots are used in five cycles while maintaining up to 60% photodegradation efficiency. The proof-of-concept present in this work represents a simple way to obtain soft microrobots with magnetic actuation and photodegradation functionalities for several water purification applications.


Subject(s)
Environmental Pollutants , Zinc Oxide , Magnetics , Hydrogels , Magnetic Phenomena
13.
Small ; 19(6): e2205047, 2023 02.
Article in English | MEDLINE | ID: mdl-36475385

ABSTRACT

Bovine mastitis produced by Staphylococcus aureus (S. aureus) causes major problems in milk production due to the staphylococcal enterotoxins produced by this bacterium. These enterotoxins are stable and cannot be eradicated easily by common hygienic procedures once they are formed in dairy products. Here, magnetic microrobots (MagRobots) are developed based on paramagnetic hybrid microstructures loaded with IgG from rabbit serum that can bind and isolate S. aureus from milk in a concentration of 3.42 104 CFU g-1 (allowable minimum level established by the United States Food and Drug Administration, FDA). Protein A, which is present on the cell wall of S. aureus, selectively binds IgG from rabbit serum and loads the bacteria onto the surface of the MagRobots. The selective isolation of S. aureus is confirmed using a mixed suspension of S. aureus and Escherichia coli (E. coli). Moreover, this fuel-free system based on magnetic robots does not affect the natural milk microbiota or add any toxic compound resulting from fuel catalysis. This system can be used to isolate and transport efficiently S. aureus and discriminate it from nontarget bacteria for subsequent identification. Finally, this system can be scaled up for industrial use in food production.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Female , Rabbits , Staphylococcus aureus/metabolism , Milk , Escherichia coli , Enterotoxins/metabolism , Magnetic Phenomena , Immunoglobulin G
14.
Small ; : e2204887, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36585370

ABSTRACT

The cost of insect pests to human society exceeds USD70 billion per year worldwide in goods, livestock, and healthcare services. Therefore, pesticides are needed to prevent insect damage despite the secondary effects of these chemical agents on non-target organisms. Chemicals encapsulation into carriers is a promising strategy to improve their specificity. Hydrogel-based microrobots show enormous potential as chemical carriers. Herein, hydrogel chitosan magnetic microrobots encapsulating ethyl parathion (EP)-CHI@Fe3 O4 are used to efficiently kill mealworm larvae (Tenebrio molitor). The mechanism takes advantage of pH-responsive chitosan degradation at Tenebrio molitor midgut pH to efficiently deliver pesticide into the mealworm intestinal tract in just 2 h. It is observed that under a transversal rotating magnetic field, mealworm populations show higher mortality after 30 min compared to free pesticide. This example of active pesticide carriers based on soft microrobots opens new avenues for microrobots applications in the agrochemical field as active chemical carriers.

15.
ACS Appl Mater Interfaces ; 14(40): 45545-45552, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36165774

ABSTRACT

Removal of oil is very important for environmental remediation when considering its negative impacts on living organisms and on the quality of water, groundwater, and soil. Here, we report on the application of hydrophobic magnetic hydrogen-bonded organic pigment-based microrobots for oil removal. The microrobots can be wirelessly navigated in a transversal rotating magnetic field, with full control of their trajectory. In addition, the velocity of magnetic microrobots can be easily controlled by changing the frequency. Due to their hydrophobic nature, the microrobots were able to enter droplets of spilled oil. Consequently, the navigation of the oil droplets was enabled in a magnetic field. Moreover, the microrobots captured within the oil droplets exhibited a swarm-like behavior; they collectively navigated toward further oil droplets that were collected and transferred to a desired location. This concept does not require the use of any additional fuel or surfactants, which is crucial for large-scale oil pollution treatment. Therefore, we believe that these microrobot swarms have great potential in remediating aqueous environments.

16.
Npj Flex Electron ; 6(1): 73, 2022.
Article in English | MEDLINE | ID: mdl-35990769

ABSTRACT

Due to the emergence of various new infectious (viral/bacteria) diseases, the remote surveillance of infected persons has become most important, especially if hospitals need to isolate infected patients to prevent the spreading of pathogens to health care personnel. Therefore, we develop a remote health monitoring system by integrating a stretchable asymmetric supercapacitor (SASC) as a portable power source with sensors that can monitor the human physical health condition in real-time and remotely. An abnormal body temperature and breathing rate could indicate a person's sickness/infection status. Here we integrated FePS3@graphene-based strain sensor and SASC into an all-in-one textile system and wrapped it around the abdomen to continuously monitor the breathing cycle of the person. The real body temperature was recorded by integrating the temperature sensor with the SASC. The proposed system recorded physiological parameters in real-time and when monitored remotely could be employed as a screening tool for monitoring pathogen infection status.

17.
Adv Mater Technol ; 7(6): 2101121, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35539284

ABSTRACT

Additive manufacturing technology, referred as 3D printing technology, is a growing research field with broad applications from nanosensors fabrication to 3D printing of buildings. Nowadays, the world is dealing with a pandemic and requires the use of simple sensing systems. Here, the strengths of fast screening by a lab-on-a-chip device through electrochemical detection using 3D printing technology for SARS-CoV-2 sensing are combined. This system comprises a PDMS microfluidic channel integrated with an electrochemical cell fully 3D-printed by a 3D printing pen (3D-PP). The 3D-PP genosensor is modified with an ssDNA probe that targeted the N gene sequence of SARS-CoV-2. The sensing mechanism relies on the electro-oxidation of adenines present in ssDNA when in contact with SARS-CoV-2 RNA. The hybridization between ssDNA and target RNA takes a place and ssDNA is desorbed from the genosensor surface, causing a decrease of the sensor signal. The developed SARS-CoV-2/3D-PP genosensor shows high sensitivity and fast response.

18.
Small ; 18(23): e2200208, 2022 06.
Article in English | MEDLINE | ID: mdl-35535470

ABSTRACT

Micro/nanorobots represent a new generation of micromachines that can accomplish various tasks, such as loading and transporting specific targets or pharmaceuticals for a given application. Biohybrid robots consisting of biological cells (bacteria, sperm, and microalgae) combined with inorganic particles to control or propel their movement are of particular interest. The skeleton of these biohybrid robots can be used to load biomolecules. In this work, the authors create biohybrid robots based on tomato plants by coculturing ferromagnetic nanoparticles (Fe3 O4 ) with tomato callus cells. The tomato-based biohybrid robots (Tomato-Biobots) containing Fe3 O4 nanoparticles  are driven by a transversely rotating magnetic field. In addition, biohybrid robots are used to load vitamin C, to generate clones of tomato cells. It is shown that the presence of Fe3 O4  does not affect the growth of tomato callus. This study opens a wide range of possibilities for the use of biohybrid robots@Fe3 O4  to deliver conventional agrochemicals, including fertilizers, pesticides, and herbicides, and allows for a gradual and sustained release of nutrients and agrochemicals, leading to precise dosing that reduces the amount of agrochemicals used. This conceptually new type of micromachine with application to plants and agronomy shall find broad use in this field.


Subject(s)
Drug Carriers , Robotics , Agrochemicals , Clone Cells , Magnetic Fields , Plant Cells
19.
ACS Nano ; 16(6): 8694-8703, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35507525

ABSTRACT

Titanium dental implants are a multibillion dollar market in the United States alone. The growth of a bacterial biofilm on a dental implant can cause gingivitis, implant loss, and expensive subsequent care. Herein, we demonstrate the efficient eradication of dental biofilm on titanium dental implants via swarming magnetic microrobots based on ferromagnetic (Fe3O4) and photoactive (BiVO4) materials through polyethylenimine micelles. The ferromagnetic component serves as a propulsion force using a transversal rotating magnetic field while BiVO4 is the photoactive generator of reactive oxygen species to eradicate the biofilm colonies. Such photoactive magnetically powered, precisely navigated microrobots are able to destroy biofilm colonies on titanium implants, demonstrating their use in precision medicine.


Subject(s)
Dental Implants , Titanium , Surface Properties , Biofilms , Magnetic Phenomena
20.
ACS Appl Mater Interfaces ; 14(22): 26128-26134, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35612487

ABSTRACT

Micro-/nanorobot technology has developed rapidly in recent years due to their great potential to perform multiple tasks. Here, we develop magnetic microrobots prepared as polycaprolactone/Fe3O4 microspheres covered by micellar polyethyleneimine and use them to efficiently remove a nerve agent from contaminated water. The magnetic polymeric microrobots presented in this work removed around 60% of the nerve agent from water samples in a short time. The attractive performance of these magnetic microrobots offers a very promising approach to large-scale water treatment for environmental remediation.


Subject(s)
Nerve Agents , Polymers , Magnetic Phenomena , Micelles , Polyethyleneimine
SELECTION OF CITATIONS
SEARCH DETAIL
...